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In order to describe plastic deformation of metals under shock waves kinetic relation- 
ships are suggested which determine at the first level the plastic strain rate in terms of 
the multiplication rate and displacement velocity of mobile dislocations in relation to the 
operating shear stress. At the second level, at which rotation modes play a governing role, 
the plastic strain rate is a function of the displacement velocity of the dipoles of partial 
dislocations. Examples are provided of elastoplastic wave fronts in steel and aluminum~ 

Works devoted to microstructural models of elastoplastic wave propagation with dynamic 
loading are based on dislocation -kinetic relationships including kinematic equations of the 
form [i-3] 

= b A T > o +  b N m v  or ? = b N m v  (1 )  

( i  i s  p l a s t i c  s h e a r  s t r a i n  r a t e ,  N i s  d i s l o c a t i o n  m u l t i p l i c a t i o n  r a t e ,  b i s  B u r g e r s  v e c t o r ,  
X is average dislocation path length, N m is mobile dislocation density, and v is their aver- 
age velocity), and also a rule for dislocation movement in one form or another determining 
the dependence of dislocation velocity on applied shear stress. 

However, for satisfactory agreement of calculated and experimental data for the evolu- 
tion of a wave front as a rule it is necessary to adjust some or other parameters (mostly 
connected with dislocation density) which are in the above-named set of equations [i]. 

It is possible to understand the behavior of materials with shock-wave loading better 
by noting the considerable progress in recent years in understanding the microstructural 
aspects of large plastic strains which is based on introducing structural scale levels of 
plastic strain, its rotation modes, and collective properties of dislocations and disclina- 
tions [4-6]. It should be noted that collective dislocation effects develop on reaching a 
critical value for dislocation density [4], and the reasons for rotation effects are relaxa- 
tion of internal force moments, the work of applied stress moments, dislocation instability, 
and material plastic property anisotropy [5]. 

It is shown in a number of works that plastic strain in its developed phase with shock- 
wave loading is accomplished in a form of movement for a series of microflows [7-9] which in 
essence are developed of current dislocation instability. Further misorientation of them 
[I0] points to inclusion of a disclination (rotation) mechanism of plastic strain. 

Thus, it is possible to suggest that plastic strain with dynamic loading is accomplished 
at two scale levels: in the first (microscopic) it is elementary carriers, i.e., individual 
dislocations, and in the second (mesoscopic) it is the dislocation current and disclination 
dipoles, quadrupoles, etc. [4, 5]. In accordance with this each of the levels has its own 
part in the elastoplastic wave front. 

It is noted that probably a two-level model of eiastoplastic deformation of metals in 
shock waves was first considered in [ii] where in contrast to this work microscopic and 
macroscopic strain levels were mentioned, and the conservation equation together with a fun- 
damental equation of the relaxation type was solved numerically. 

In order to evaluate the reality of the model suggested by us we consider in more de- 
tail calculation of a space-time compression pulse for the unidimensional case~ For this 
purpose we write a set of dynamic equations for a solid material 

o~ ~ ~ o~ (2) 
Po Ot - -  O,r ' Ot - -  Ox 

with a fundamental equation in the form 
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ao (1t + as s a~. (3 )  
ot 2G) -gF = -- -f 

Here o is normal stress in the direction of wave propagation; e is total (elastic plus plas- 
tic) strain; u is particle mass velocity; P0 is material density; Xl is Lam6 constant; G is 
shear modulus. 

For the first (dislocation) level the solution of set of Eqs. (2) and (3) with fulfill- 
ment of a regenerative rule for multiplication of dislocations 

Nm = N i n e +  a? (4) 

(Nm0 is initial density of mobile dislocations, ~ is dislocation multiplication factor) and 
taking account of the Gilman dependence of dislocation velocity on shear stress 

v = c t exp (--('% q- H?)/z) (5 )  

(c t is transverse shear wave velocity, t 0 is stress reflecting the overall level of barriers 
in a dislocation path, H is strengthening factor taking account of processes of dislocation 
stoppering with a high density of them) is well-known [12, 13]: 

8 oo c,,,,. 
~ i - -  3 

He re  %'c = z o / G ;  B,  = H/G; Nor = 10~a-1014 m -2 i s  c r i t i c a l  d i s l o c a t i o n  d e n s t i y ;  c i s  l ong i -  
t u d i n a l  sound wave velocity; c h is hydrostatic sound velocity; 6 = in(0/bct~G); 0 = bct~ • 

-- C 2 2 - 2 elp(B,/M); k = 8/Cp; M = 2(c~ p)/(c - Cp); Cp is plastic wave velocity. 

In the second stage of plastic strain its rate is determined by the expression 

;f~, = N b v  + 2no~avd (7 )  

[n i s  d e n s i t y  o f  m o b i l e  d i p o l e s  o f  p a r t i a l  d i s c l i n a t i o n s  (DPD), ~, 2a ,  and v d a r e  d i p o l e  mag- 
n i t u d e ,  arm,  and v e l o c i t y ] .  

We f i n d  t h e  DPD v e l o c i t y  by making  two a s s u m p t i o n s :  1) t h e r e  i s  no m u l t i p l i c a t i o n  o f  d i s -  
c l i n a t i o n s  w i t h  movement  o f  d i p o l e s ;  2) s t r e s s  in  an e l a s t o p l a s t i c  wave e x c e e d s  t h e  c r i t i c a l  
s t r e s s  s t a r t i n g  f rom which  c o l l e c t i v e  d i s l o c a t i o n  r e c o n s t r u c t i o n s  a r e  p o s s i b l e .  

I t  i s  e v i d e n t  t h a t  t h e  s e c o n d  a s s u m p t i o n  f o r  i n t e n s e  dynamic  l o a d s ,  which  a r e  r e a l i z e d  
in  t h e  e l a s t o p l a s t i c  waves  in  q u e s t i o n ,  i s  a l m o s t  a l w a y s  f u l f i l l e d .  Then t h e  DPD v e l o c i t y  
i s  d e t e r m i n e d  by t h e  r e l a t i o n s h i p  [5] 

va = In (1 - -  (o/bN1;~) (8 )  

(N~ i s  i n i t i a l  d i s l o c a t i o n  d e n s i t y  e q u a l  in  o u r  c a s e  t o  N c r ) .  M o b i l e  d i s l o c a t i o n  v e l o c i t y  in  
the second part is determined from the rule for viscous retardation 

v = ( ~ - -  %)b/B ( 9 )  

(B i s  d i s l o c a t i o n  v i s c o u s  r e t a r d a t i o n  f a c t o r ) .  

By substituting (9) in (8) and assuming the X -~ a, we obtain 

2 ('~ -- ~o) b 
Ud = - -  B ln(t -- o)/bNra )" (10)  

Dipole density is determined in the form n = ~Ncr (~ = const << i). According to esti- 
mates provided in [14], nma x = i011 m -2, i.e., Bmax = 10-a-10-2" 

By identifying plastic strain channels with partial disclination dipoles we have ob- 
tained by scanning electron microscopy the following values for a series of structural mate- 
rials: for steels 12KhI8NIOT, St. 4, and steel 45, n= 9"108, 8"109, and 2"109 m -2. Thesemate- 
rials were tested for the effect of a shock wave with an intensity of about 50 GPa. 

Taking account of (i0) Eq. (7) takes the form 

and (3) has the form 

YII ~ 'u b~ b In (l -- ~-fbNcr a)] 

�9 " 8 GNerb2 (1 -- 413oa \ O l I  -- p o C 2 E I I  ~ -- ~ 

(11) 

(12) 
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In terms of shear strain taking account of the fact that 

8 
-- (~.~ ~- 2G) ~ = -- -ff GT; 

(~r i s  s h e a r  s t r e s s ) ,  Eq .  ( 1 2 )  may b e  r e w r i t t e n  a s  

G ((e - -  27) - -  "to) Ncr b2 ( t  - -  4~oa 
711 B . b in(l ---- ~-~Ncr a ) ]" 

In the case of a stationary plastic front system (2)-(5) takes the form 

au aa 
Po% ~ + ~ = O; 

0$ Ou 
% ~-~ + b-T = O; 

07 GNcr-ff _( I -- b In (t --4!$~ ~ ~ - ((~ - 2v)  - *o) ~ / b ~ r ~  ) ~ ]. 

Integration of Eqs. (16a) and (16b) with respect to x gives 

pocpu -~- c~ ~ cl, cp~ -~- u = c2, 

(i3) 

(14) 

( i s )  

(16a) 

(16b) 

( i6c)  

(17) 

and constants are found from conditions for the variables sought behind the region of a 
rapid change in them. Let El, oi, and u I be values for strain, stress, and particle mass 
velocity at the end of the first part, and E0, o 0, and u 0 be the maximum values of these 
quantities. Then system (17) is written as 

poCvU § (r = po%Uo -~ %, %8 ~ u = c , ~  + u l ,  (18) 

By substituting (13) in (18) we obtain 

s ( 1 9 )  pocpu + poc28 - -  y G 7 = po%Uo + %, %e + u = cpe~ + u~. 

From these equations it is possible to find stresses and strains in a plastic front in terms 
of plastic shear strain y whose dependence on time and coordinate may be determined from the 
combined solution of Eqs. (15) and (16c), and as a result of this we have 

0"II - -  c~" -~- c 2 9~ 2%Uav-[- c~s~ + :̀% ---if80)Gc~ q__~8 c~G exp (--  kx (x - -  Opt)) , ( 2 0 )  

where 

Uav -- _ _  

~+c ~) 3 2 ~ =  2Uav+Cvet--T*(CP 
yv0cp 

In this case angular frequency 

0 
! C 2 ~ c 2 \ 

In accordance with expressions (6) and (20) the leading front of a compression pulse is 
in the form of an exponential curve growing due to stresses in the elastic precursor, i.e., 
the Hugoniot elastic limit (which has a point of inflection A in Figs. 1 and 2 with y = u 
to the maximum stress value in the plateau of pulse o 0. 

Shown in Figs. 1 and 2 are a calculated (broken line) and an experimental (solid line) 
pulse for a target of steel 30KhN4M and aluminum grade A6. The time profile for free sur- 
face velocity was recorded by means of a laser differential interferometer. Values of ma- 
terial characteristics are given in Table i. As can be seen from Figs. 1 and 2 quite good 
qualitative and quantitative agreement is observed for calculated and experimental results. 
Some small divergences may be explained by the error in treating experimental results, and 
also the approximate nature of the values for material dislocation-disclination structure 
characteristics. 

However, it should be noted that in a number of works (see for example [I, ii, 15, 16]), 
in which good conformity of calculated and experimental data was also observed, points of 
inflection were not detected either by experiment or calculation. This situation suggests 
that the model proposed by us has limitations connected to all appearances with the original 
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TABLE 1 

Material ~o,m/see PE, GPa NmO, m--= b,m 1H,GPa I a,m -2 I~, rad 

301(hN4M 364 1 1.64 t09 2,48.10 -m 18 t 2,4. i0u I 0,06 

A6 185 I 0 , 2 7  1,5.10~ 2,s6.10:~o 7,2 I 3.t01~ 10,1 

d~ GPa ~: GPa 

2,a m 

Fig. 1 Fig. 2 

parameters (Nm0, N) of the dislocation structure and the disclination structure formed (n 
and Nd, i.e., the number of disclinations in a DPD), and also with initial parameters of 
shock-wave loading. 
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